It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square.
\[9 = 7 + 2×1^2\] \[15 = 7 + 2×2^2\] \[21 = 3 + 2×3^2\] \[25 = 7 + 2×3^2\] \[27 = 19 + 2×2^2\] \[33 = 31 + 2×1^2\]It turns out that the conjecture was false.
What is the smallest odd composite that cannot be written as the sum of a prime and twice a square?
import math
def is_Prime(number):
    if number < 2:
        return False
    for x in range(2, int(math.sqrt(number)) + 1):
        if number % x == 0:
            return False
    return True
i = 2
while True:
    i += 1
    odd = 2 * i - 1
    if is_Prime(odd):
        continue
    result = False
    for p in range(2, odd):
        if not is_Prime(p):
            continue
        m = odd - p
        if not m % 2 == 0:
            continue
        m /= 2
        if not int(math.sqrt(m))**2 == m:
            continue
        m = int(math.sqrt(m))**2
        result = True
        #print "%s = %s + 2 x %s ^ 2" % (odd, p, m)
        break
    if not result:
        print odd
        exit(0)
这题是几天前完成的了,感想忘了。好像看到歌德巴赫就想到了陈景润……我就记得好像跑得没有1.4S(解开print)/0.9S(注解print)那么快的样子,难道真的是家里电脑更好?